Computing Discrepancies Related to Spaces of Smooth Periodic Functions

نویسندگان

  • Karin Frank
  • Stefan Heinrich
چکیده

A notion of discrepancy is introduced, which represents the integration error on spaces of r-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical L2-discrepancy as well as r-smooth versions of it introduced recently by Paskov Pas93]. Based on previous work FH96], we develop an eecient algorithm for computing periodic discrepancies for quadrature formulas possessing certain tensor product structures, in particular, for Smolyak quadrature rules (also called sparse grid methods). Furthermore, fast algorithms of computing periodic discrepancies for lattice rules can easily be derived from well{known properties of lattices. On this basis we carry out numerical comparisons of discrepancies between Smolyak and lattice rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the dual of certain locally convex function spaces

In this paper, we first introduce some function spaces, with certain locally convex topologies, closely  related to the space of real-valued continuous functions on $X$,  where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.

متن کامل

Analysis Preliminary Exam Workshop: Distributions and Sobolev Spaces

A distribution is a linear functional on a space of test functions. Distributions include all locally integrable functions and have derivatives of all orders (great for linear problems) but cannot be multiplied in any natural way (not so great for nonlinear problems). One can use many different spaces of test functions. We will consider distributions on the space D(Ω) of smooth compactly suppor...

متن کامل

Partial Differential Equations Example sheet 2

Consider the following spaces of 2π-periodic functions on the real line: C per([−π, π]) = {u ∈ C(R) : u(x + 2π) = u(x)} , for r ∈ [0,∞]. The case r = 0 is the continuous 2π-periodic functions, while the case r = ∞ is ths smooth 2π-periodic functions. For functions u = u(x1, . . . xn) we define the corresponding spaces C per([−π, π]) of C functions which are 2π-periodic in each coordinate. (All ...

متن کامل

Embeddings of ultradistributions and periodic hyperfunctions in Colombeau type algebras through sequence spaces

In a recent paper, we gave a topological description of Colombeau type algebras introducing algebras of sequences with exponential weights. Embeddings of Schwartz spaces into the Colombeau algebra G are well known, but for ultradistribution and periodic hyperfunction type spaces we give new constructions. We show that the multiplication of regular enough functions (smooth, ultradifferentiable o...

متن کامل

Smooth biproximity spaces and P-smooth quasi-proximity spaces

The notion of smooth biproximity space  where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007